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SUMMARY

Transmission is the driving force in the dynamics of any infectious disease. A crucial element

in understanding disease dynamics, therefore, is the ‘ transmission term’ describing the rate at

which susceptible hosts are ‘converted’ into infected hosts by their contact with infectious

material. Recently, the conventional form of this term has been increasingly questioned, and

new terminologies and conventions have been proposed. Here, therefore, we review the

derivation of transmission terms, explain the basis of confusion, and provide clarification. The

root of the problem has been a failure to include explicit consideration of the area occupied by

a host population, alongside both the number of infectious hosts and their density within the

population. We argue that the terms ‘density-dependent transmission’ and ‘frequency-

dependent transmission’ remain valid and useful (though a ‘fuller ’ transmission term for the

former is identified), but that the terms ‘mass action’, ‘ true mass action’ and ‘pseudo mass

action’ are all unhelpful and should be dropped. Also, contrary to what has often been

assumed, the distinction between homogeneous and heterogeneous mixing in a host population

is orthogonal to the distinction between density- and frequency-dependent transmission modes.

INTRODUCTION

Much of what is understood about the dynamics of

infectious disease has been derived from investigations

of mathematical models of disease dynamics or the

application of those models in medical, veterinary or

ecological contexts [1]. The transmission of infection

from infectious to susceptible hosts is arguably the

driving force in the dynamics of any infectious disease.

A crucial element of the mathematical models,

therefore, and hence of an understanding of disease

dynamics, has been the ‘transmission term’ describing

* Author for correspondence: School of Biological Sciences,
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L69 3GS, UK.

the rate (per unit time) at which susceptible hosts are

‘converted’ into infected hosts by their contact with

infectious material. Recently, the conventional form

of this term, and conventional terminologies, have

been increasingly questioned [2], and new termino-

logies, and even new conventions, have been pro-

posed. No consensus has been arrived at, however,

giving rise, potentially, to confusion and an un-

productive lack of uniformity.

Here, we review the derivation of transmission

terms, explain the basis of the confusion, and thus,

hopefully, provide clarification. These transmission

terms describe a process in which there is no explicit

spatial behaviour (no ‘movement parameters ’), al-

though spatial distribution and movement is implicitly



148 M. Begon and others

incorporated. Further, they refer to populations of

hosts within which there are no distinct sub-classes in

terms of the biological characteristics involved in

transmission, although where there are such sub-

classes, separate transmission terms of the type

discussed here may be applied to transmission within

each class and between classes.

A DERIVATION FROM NUMBERS OR

DENSITIES ?

De Jong and his collaborators [2, 3] have argued that

at the heart of the disagreements surrounding trans-

mission terms has been variation and confusion in

whether numbers or densities of hosts are used in their

derivation. They claim that densities should be used,

and that those who have used numbers (e.g. [4–7])

have been wrong to do so. We disagree. First, in host-

pathogen dynamics, numbers of hosts, densities of

hosts (numbers per unit area) and the area occupied

by the host population may all vary – over time and

from population to population. If a formulation (e.g.

[2, 8–10]) is based on densities alone, it is impossible

to distinguish variations in numbers from variations

in areas-occupied. On the other hand, a derivation can

only be based on numbers alone if it is assumed at the

outset that the area occupied by populations is

constant, which is not true as a generalization.

Moreover, given that area may vary, the ‘balance

equations’, to which the transmission terms con-

tribute, have to be constructed on the basis of counting

individuals, which have a continuing integrity, rather

than balancing densities, which do not. Hence, in the

following section, we derive transmission terms using

arguments in which both numbers and areas enter

explicitly. Terms based on densities can then be

derived from these.

A BASIC TRANSMISSION TERM

The argument is developed for directly transmitted

infections, in which susceptible hosts become infected

by direct ‘contact ’ with infectious hosts, that is,

without the intervention of a vector species or free-

living infectious particles. The transmission term

appears traditionally [4] both in equations describing

the changing numbers of susceptible hosts, S, as a

‘ loss ’ term, and also in equations describing the

changing numbers of infected hosts, I, as a ‘gain’

term, counteracted by the loss of infecteds through

death and recovery. In what follows, for clarity, we

deal only with the infected-host equation, and we omit

the loss term: dI}dt will refer only to the rate of

increase, through new infection, in the number of

infecteds.

This rate increases with the number of susceptible

hosts, S, ‘available ’ to be converted into infected

hosts, which must then be multiplied by a per capita

rate, conventionally referred to as the ‘force of

infection’. The force of infection is the product of (i)

the rate of contacts, c, which are of an appropriate

type for transmission to be possible if one of the hosts

is infectious, (ii) the probability, p, that a contact is

indeed with an infectious host, and (iii) the prob-

ability, ν, that contact between an infectious and a

susceptible host does in fact lead to transmission (i.e.

is ‘ successful ’). This gives rise to the following basic

equation:

dI}dt¯Scpν. (1)

The probability of successful transmission, ν, is

usually assumed to be constant for any given host-

pathogen combination. The probability that the

contact is with an infectious host, p, is usually assumed

to be I}N, the prevalence of infection within the

population, where N is the total number of hosts in

the population. This clearly depends on the as-

sumption that what applies globally, as a proportion,

to the whole population also applies ‘ locally ’, as a

probability, to given susceptibles within the popu-

lation. Transmission terms (and forces of infection)

are then usually distinguished on the basis of the rate

of contact, c.

DENSITY- AND FREQUENCY-

DEPENDENT TRANSMISSION

The first, and most frequently assumed possibility is

that c¯ κN}A ; that is, the rate of contact increases

directly with the density of the population, N}A

(where A is the area occupied by the population)

scaled by a constant, κ, which varies with the

combination of host and pathogen. The product κν is

usually referred to as β, the transmission coefficient.

This leads to the following equation:

dI}dt¯Sκ (N}A) (I}N ) ν¯βSI}A. (2)

Thus, not only does the contact rate increase with

the overall density of the host, N}A ; the per capita

force of infection also increases with the density of
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infecteds, I}A. Equation (2), then, is often said to

describe ‘density-dependent transmission’, a termin-

ology to which we subscribe. (Note that, in contrast to

previous derivations, a dependence on density can

unambiguously be introduced into an argument based

on numbers, precisely because the area occupied by

the population is included explicitly.)

A commonly assumed alternative possibility is that

c¯ η ; that is, the rate of contact is constant

irrespective of the density of the population. The

product ην may be referred to as β«, another

transmission coefficient (albeit with different dimen-

sions to β – see below). This leads to the following

equation:

dI}dt¯Sη (I}N ) ν¯β«SI}N. (3)

Here, the per capita force of infection increases with

the prevalence of infection, I}N, which might also be

called the ‘frequency’ of infecteds; and the contact

rate, being constant, may be said to increase with the

‘frequency’ of contacts, though this is tantamount to

saying that the contact rate increases with the contact

rate. Be that as it may, equation (3) is often said to

describe ‘ frequency-dependent transmission’, a ter-

minology to which we also subscribe (in part because

of our wish not to introduce new terms – such as the

logical ‘prevalence-dependent transmission’, or ‘pro-

portionate mixing’ [7] – if this can be avoided).

Thus, density- and frequency-dependent transmis-

sion may be distinguished on the density- and

frequency-dependences of their forces of infection,

and also (stretching terminologies) on the density- and

frequency-dependences of their contact rates. In the

past, different authors have used different distinctions

in defining the contrasting transmission types, or

(more often) they have been less than explicit in

justifying their use of the terms. We believe, nonethe-

less, that ‘density- and frequency-dependent trans-

mission’ are sufficiently well tied to the fundamental

distinctions between the two types for their use as a

generally accepted terminology to be warranted,

especially in view of the unacceptability of alternative

terms (see below).

TRANSMISSION TERMS BASED ON

DENSITIES ?

Equations (2) and (3) can also readily be expressed in

terms of densities (numbers per unit area) by replacing

I with iA and so on (where the lower case refers to the

density-equivalent of the number referred to by the

capital letter) – but only provided that the area

occupied by the population is assumed to remain

constant over time. The alternative of allowing area to

vary over time is examined briefly in a later section.

For now, the density (constant area) equivalent of

equation (2) is :

di}dt¯βsi, (4)

while that for equation (3) is :

di}dt¯β«si}n. (5)

It follows from this that the numbers equations (2)

and (3) may be used as they stand; but the density

equations (4) and (5), although they have often been

used (e.g. [2, 8–10]) should only strictly be used if an

assumption of constant area over time is acknow-

ledged.

MASS ACTION TRANSMISSION ?

Density-dependent transmission has frequently been

described as ‘mass action transmission’ [10], by

analogy with the binary collision of gas particles in a

perfect gas exhibiting Brownian motion and subject to

the Law of Mass Action (apparently going back to

Hamer [11]). As pointed out by De Jong et al. [2],

however, the numbers form of this has generally been

quoted not as equation (2) but as :

dI}dt¯β*SI, (6)

where the * has been inserted to indicate, again, that

the dimensions of β are different from those in

equation (2). Specifically, β*¯β}A, which is there-

fore only constant if A is constant – not only within a

given population over time, but also between different

populations being compared at the same time. It is

only under these (unlikely) circumstances that equa-

tion (6) can be used as a compact form of equation (2).

Otherwise, equation (2) reflects the biological reality,

absent from equation (6), that for given values of S

and I, dI}dt will be greater in a population occupying

a smaller area, in which hosts are more likely to make

contact with one another. Similarly, equation (4) can

only be described as mass action transmission if the

population is assumed to occupy ‘an arena of fixed

size’ [10]. Equation (2) may therefore lay claim to

describing ‘mass action transmission’, though this

claim appears never to have been made. But equations

(4) and (6), which have frequently been said to
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describe mass action transmission, only do so if

constancy of A within (in the case of equation (4)) or

both within and between populations (equation (6))

are assumed. We contend, therefore, that use of the

term ‘mass action’ should be discontinued on the

grounds of inevitable uncertainty as to whether it is

being applied to equation (2), which would be correct

but out of line with past practice, or equation (4) or

(6), which would be in line with much past practice

but either limited in its application or incorrect.

Interestingly, the literature of chemical kinetics

suggests that the first statement of the Law of Mass

Action was due to Guldberg and Waage [12] and took

the following form. ‘The velocity of a reaction, at a

given temperature, is proportional to the product of

the concentrations of the reacting substances. ’ Thus

concentrations (which are equivalent to densities) are

invoked. However later work [13] parallels points

made here in recognizing that care must be exercised

in dealing with the relation between numbers of

molecules and concentrations in reactions at different

or varying volume.

TRUE AND PSEUDO MASS ACTION ?

In their series of papers in which they criticised the

confusion that may arise from ‘numbers’ derivations

of mass action transmission, De Jong and colleagues

[2, 3] went on to argue that the phrase ‘mass action’

should actually be applied to the transmission term

β«SI}N rather than β*SI. They did so because this was

the ‘numbers’ transmission term that emerged from a

particular density-dependent derivation of their own,

based initially on densities. However, as part of their

derivation, they suggested that each individual occu-

pies a characteristic area, such that the area occupied

by a population is directly proportional to the size of

that population. In this case (and only in this case) A

and N are interchangeable (with appropriate re-

scaling), leading effectively to the conclusion that

equation (2) implies equation (3) with β¯β«. From

this, De Jong et al. suggested that ‘dI}dt¯β«SI}N ’

should be referred to as ‘ true mass action trans-

mission’, whereas ‘dI}dt¯β*SI ’ should be referred

to as ‘pseudo mass action transmission’, a suggestion

that received some initial support [14, 15].

Contrary to their argument, however, the area

occupied by many populations does not increase as

the numbers increase, and A and N are not therefore

generally interchangeable. Hence, we contend that

their argument is flawed and that adoption of the

terms ‘true’ and ‘pseudo mass action’ is not justified.

Indeed, referring to ‘dI}dt¯β«SI}N ’ as ‘ true mass

action transmission’ is particularly misleading, since

in general it derives not from a ‘mass action’ argument

but from one with a constant contact rate (equation

(3)). Equation (2) is only equivalent to this in the

special case where N and A are interchangeable,

because this means that density and thus contact rate

are constant.

NUMBERS, DENSITIES AND AREAS

OCCUPIED

Confusing numbers and densities in an argument, and

ignoring area, may seem difficult to understand.

Indeed, criticisms of this have come from a veterinary

background (e.g. [2]), where it is natural to expect

larger populations to occupy larger areas : larger

populations of pigs occupy more pens, larger herds of

cattle occupy more fields. However, the derivations

that have been criticised have often concerned human

and other populations which have been assumed to

remain constant in size, at least on time-scales

comparable to those over which disease dynamics are

studied (‘epidemiological ’ rather than ‘ecological ’

studies [16]). In such cases, it is perhaps natural to also

assume, implicitly, that the area occupied by popula-

tions is always the same. Likewise, ecological studies,

in which host population size does vary, have focused

on wildlife populations where investigations are

usually carried out on an experimental or observa-

tional ‘grid’ or ‘sampling unit ’ within a much larger

host population [14, 17]. Thus, numbers and densities

within a population are effectively the same, since the

area of the sampling unit is constrained by practica-

lities never to vary in size.

In practice, therefore, the assumption of constant

area within a population may have been a safe one in

many epidemiological and wildlife studies. Even in

these types of systems, however, there are effectively

no grounds for the constant-area assumption when

different populations are compared. There seems little

doubt that equation (2) is the more general, and in

that sense more correct, equation, which should be

replaced by equation (6) only when the constant-area

assumption is made explicitly.

In passing, note that it has also been claimed [6, 18]

that in populations (e.g. humans) where numbers

remain effectively constant and are not affected by
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disease, density- and frequency-dependent models are

equivalent ; that is, equations (3) and (6) are the same

because N is constant. Including area, however, makes

it apparent that this, too, is true (i.e. equations (2) and

(3) are the same) only if it is additionally assumed not

only that the area occupied by any given population

remains constant, but that all populations that might

be compared occupy the same area.

Explicit inclusion of area, moreover, raises the

question of what precisely is meant by ‘the area

occupied by a population’. This may seem unam-

biguous: the population living in an isolated wood-

land occupies the area of that woodland; the area

occupied by a population studied in a sampling grid is

the area of that grid; the area occupied by a

population of pigs is the area of the pens through

which they roam. Implicit in this simple view,

however, is the assumption that these populations

fully occupy the areas concerned. But in practice,

many populations are likely to leave areas unoccupied

within their boundaries. A doubling of population

size within an unchanged boundary may then appear

to imply a doubling of density, whereas in reality the

density might increase by much less than this or even

remain unchanged, because the additional individuals

have occupied previously unoccupied parts of the

habitat. At its most extreme, this is equivalent to De

Jong et al.’s ‘characteristic area’ for each individual :

number and area are directly proportional, density is

constant, and transmission is frequency-dependent as

a consequence.

THE DIMENSIONS OF β

The various parameters β that we have introduced are

different in that they have different dimensions (a

point not raised by McCallum et al. [10]). A discussion

of these throws further light on their interrelations.

The dimensions of the β in equations (2) and (4)

(density-dependent transmission) are inherited from

those of κ ; they are area (per individual) per unit time,

reflecting the fact that this latter quantity can be

regarded as the effective area over which a susceptible

makes contact in unit time. The dimensions of the β«
in equations (3) and (5) (frequency-dependent trans-

mission) are inherited from those of η ; they are time−",

since this quantity is the rate at which a susceptible

makes contact with other hosts. Finally, the β* in

equation (6) (the conventional ‘mass action’ equation)

inherits its dimensions from those of a contact rate per

susceptible, which is taken to increase in proportion to

the total number of individuals in a population

occupying a constant area. The dimensions are thus

(per individual) per unit time.

THE BIOLOGY OF TRANSMISSION :

‘ HOMOGENEOUS AND

HETEROGENEOUS MIXING ’

What, then, are the biological meanings of density-

and frequency-dependent transmission? In the past,

answers to this question have often involved implicitly

equating density-dependent transmission with ‘homo-

geneous mixing’ – random contacts between indivi-

duals – and frequency-dependent transmission with

some contrasting type of heterogeneity : for example,

the selection of partners as an element in the

transmission of a sexually transmitted disease [18].

There is, however, no such direct correspondence. If

mixing is heterogeneous in the sense that there are

distinct classes amongst hosts in terms of their

‘contact experience’ (for example, young individuals

are static, older individuals move freely), then no

single transmission term can capture this – separate

terms are requited for transmission within and

between the different classes.

Homogeneity of contact experience, though, can

come about in two ways. First, each individual may

have an equal chance of contacting any other

individual in the whole population during a given time

period, as when individuals move rapidly and at

random throughout the population. This is homo-

geneous mixing in every sense. But, contrary to what

is often assumed (e.g. [10]), this is not the only route

to homogeneity of contact experience. The contact

experience is also homogeneous when all individuals

have equivalent contact structures – including rates –

(i.e. the system is uniform, at least in some statistical

sense). In this case, contact structures can be het-

erogeneous (e.g. only involving local interactions)

without destroying the homogeneity of the contact

process. Now, in a uniform system with equivalent

contact structures (including rates), we expect on

average that the distribution of susceptibles, infecteds,

etc. will look the same for each individual – all

susceptibles, for example, may experience locally

approximately the same (global) prevalence of in-

fection, I}N. This additional feature means that there

will be homogeneity of contact experience. (Naturally,

local interactions will create local heterogeneities – as

when an infectious individual gives rise to a temporary

cluster of infected individuals – but this will simply



152 M. Begon and others

Table 1. Illustrati�e examples of biological scenarios corresponding to four alternati�e types of transmission

Density dependent transmission: density

dependent contact rate

Frequency dependent transmission: constant

contact rate

Homogeneous contact

structure

1. Individuals move throughout the

population, fighting others at random.

1. Random sexual encounters (once a

night but it could be with anyone).

2. All infectious particles rain down

equally (whatever their source) on all

susceptibles.

2. Random ‘social ’ behaviour – a fixed

frequency of fights, for example, but

these could be with anyone.

Heterogeneous contact

structure within a

homogeneously

distributed population

1. Individuals fight their neighbours, the

numbers of which are proportional to

global density.

1. Non-random sexual encounters (once a

night with those closest to hand).

2. Infectious particles are dispersed only

locally (but the rain of particles is

nonetheless homogeneous).

2. Fights with territorial neighbours (where

territories change in size with density so

that the number of neighbours is always

the same).

3. Family member contact, where family

size is proportional to global density.

3. Family member contact, where family

size is the same irrespective of density.

create noise around a shared ‘expectation’ of contact

experience.) The important contrast, therefore, is

between (i) truly homogeneous contact and (ii) a

heterogeneous contact structure within a uniform

system, nonetheless leading to homogeneous contact

experience.

This contrast, moreover, is orthogonal to the

distinction between density- and frequency-dependent

contact rates and transmission. The total per capita

contact rate can either scale with density (in the

density-dependent case) or remain constant (in the

frequency-dependent case) through either a sequence

of homogeneous contact structures or a sequence of

heterogeneous ones. Illustrative examples (not exhaus-

tive) of the biological scenarios that may lead to the

four consequent types of transmission are listed in

Table 1. Bearing in mind that these are benchmark

transmission modes, to which real examples are

unlikely to conform strictly, it is apparent from the

table that frequency-dependent transmission is most

likely to be associated with a heterogeneous contact

structure, as often suggested (the scenarios in the top-

right cell of the table are less plausible than those to

the bottom-right). Also, density-dependent transmis-

sion is more likely to be associated with a homo-

geneous contact structure than is frequency-depen-

dence (the scenarios in the top-left cell are perhaps

more plausible than those to the top-right). But

density-dependent transmission will clearly often arise

out of a heterogeneous contact structure (lower-left),

while frequency-dependent transmission with a homo-

geneous contact structure is far from unimaginable

(top-right).

INCLUDING VARIATIONS IN AREA

The decision to base our account on equations for

numbers means that those in densities acquire extra

terms in situations where area varies dynamically.

Thus equation (2) leads to

di}dt¯βsi®(i}A) (dA}dt)¯ i (βs®dA}dt [ I}A) (7)

in place of equation (4). The extra term here may be

interpreted biologically as follows. When area is

increasing over time, the rate of production of new

infecteds is lowered in line with the proportionate

increase in area (dA}dt [ I}A), because the contact

rate is proportionately lower.

CONCLUSION

We have concentrated here on reviewing and then

clarifying the meaning of two simple transmission

terms in common use. As we and others have noted

previously, however [2, 14, 19] transmission in prac-

tice, even when it can be reduced to a single term, will

only rarely conform exactly to either density- or

frequency-dependence, instead either lying somewhere

between the two, or being better described by some

variant more or less closely related to them. McCallum

et al. [10] have reviewed the range of alternatives that

have been suggested. Nonetheless, for the foreseeable

future, the two terms discussed here are likely to

remain benchmarks against which actual transmission

dynamics are judged, and to remain key elements in

most mathematical models of transmission. Uni-

formity of terminology and unambiguousness of

meaning are therefore highly desirable.



153Transmission terms in host-parasite models

ACKNOWLEDGEMENTS

We thank NERC and MAFF for financial support,

and Andy Dobson, Rob Knell and Hamish McCallum

for their comments on the manuscript.

REFERENCES

1. Grenfell BT, Dobson AP. Ecology of infectious diseases

in natural populations. Cambridge: Cambridge Uni-

versity Press, 1995.

2. De Jong MCM, Diekmann O, Heesterbeek JAP. How

does transmission of infection depend on population size?

In: Epidemic models : their structure and relation to data

models. Mollison D, ed. Cambridge: Cambridge Uni-

versity Press, 1995: 84–94.

3. Bouma A, De Jong MCM, Kimman TG. Transmission

of pseudorabies virus within pig-populations is in-

dependent of the size of the population. Prev Vet Med

1995; 23 : 163–72.

4. Anderson RM, May RM. Population biology of

infectious diseases : Part 1. Nature 1979; 280 : 361–7.

5. Smith G, Grenfell BT. Population biology of pseudora-

bies in swine. Am J Vet Res 1990; 51 : 148–55.

6. Thrall PH, Biere A, Uyenoyama MK. Frequency-

dependent disease transmission and the dynamics of the

Silene-Ustilago host-pathogen system. Am Nat 1995;

145 : 43–62.

7. Fromont E, Pontier D, Langlais M. Dynamics of a

feline retrovirus (FeLV) in host populations with

variable spatial structure. Proc R Soc Lond Ser B-Biol

Sci 1998; 265 : 1097–104.

8. Thrall PH, Antonovics J. Polymorphism in sexual

versus non-sexual disease transmission. Proc R Soc

Lond Ser B-Biol Sci 1997; 264 : 581–7.

9. De Leo GA, Dobson AP. Allometry and simple

epidemic models for microparasites. Nature 1996; 379 :

720–2.

10. McCallum H, Barlow N, Hone J. How should pathogen

transmission be modelled? Trends Ecol Evol 2001; 16 :

295–300.

11. Hamer WH. Epidemic disease in England – the evi-

dence of variability and the persistence of type. Lancet

1906; 1 : 733–9.

12. Guldberg CM, Waage P. Etudes sur les affinities

chimiques. Christiania (Oslo) : Brogger and Christie,

1867.

13. Pannetier G, Souchay P. Chemical kinetics. New York:

Elsevier Publishing Company, 1967.

14. Begon M, Feore SM, Bown K, Chantrey J, Jones T,

Bennett M. Population and transmission dynamics of

cowpox in bank voles : testing fundamental assump-

tions. Ecol Lett 1998; 1 : 82–6.

15. Swinton J, Harwood J, Grenfell BT, Gilligan CA.

Persistence thresholds for phocine distemper virus

infection in harbour seal Phoca �itulina metapopula-

tions. J Anim Ecol 1998; 67 : 54–68.

16. Anderson RM. Populations and infectious diseases :

ecology or epidemiology? J Anim Ecol 1991; 60 : 1–50.

17. Begon M, Hazel SM, Baxby D, et al. Transmission

dynamics of a zoonotic pathogen within and between

wildlife host species. Proc R Soc Lond Ser B-Biol Sci

1999; 266 : 1939–45.

18. Lockhart AB, Thrall PH, Antonovics J. Sexually

transmitted diseases in animals : ecological and evol-

utionary implications: Biol Rev Cambridge Philosophic

Soc 1996; 71 : 415–71.

19. Antonovics J, Iwasa Y, Hassell MP. A generalised

model of parasitoid, venereal and vector-based trans-

mission processes. Am Nat 1995; 145 : 661–75.


